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Abstract-Spacecraft  autonomy is becoming an important 
aspect of the design and operation of future space mis- 
sions. While science objectives continually increase, 
budgets for development and operations remain fairly flat. 
Implementing spacecraft autonomy  may  help  in  achieving 
these goals, while reducing operations costs. 

Autonomy algorithms have  been developed and  tested 
using  ground simulations, however the key test lies  in the 
flight performance of these techniques. In order to test 
these algorithms, the TOPEXPOSEIDON Autonomous 
Maneuver Experiment (TAME) has been designed, im- 
plemented  and executed in flight. TAME is an experiment 
to provide the necessary algorithms for planning  and exe- 
cuting attitude maneuvers and a thrusting Orbital Mainte- 
nance Maneuver (0”) autonomously. This experiment 
not  only provides the challenge of developing the auton- 
omy algorithm but also implementing them on an opera- 
tional satellite that is not designed to accommodate 
autonomous attitude or propulsive maneuvers. This paper 
describes the general experiment design with special em- 
phasis on the implementation difficulties and considera- 
tions required for implementation on a flight operational 
satellite. Although the task  of  implementing  autonomy on 
an existing flight program provides a challenge, it is 
achievable. This may provide an attractive solution to 
limit operations costs and increase the operations flexibil- 
ity to achieve additional science objectives for not  only 
future missions  but also for existing flight programs. 
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1. INTRODUCTION 

Spacecraft autonomy is becoming increasingly important 
in planning future space missions and operating existing 
missions  with a reduced ground control presence’.  Mis- 
sions will continue to become more ambitious, scientifi- 
cally and technically, and will demand more  autonomy  to 
accomplish complex tasks in uncertain environments and 
in close proximity to celestial bodies. Affordability  is 
now an additional primary driver of autonomous missions. 
Sponsors are calling for smaller missions with greatly 
reduced ground control and operation. Spacecraft with 
highly autonomous, goal directed systems are required to 
meet these new challenges. In addition to reducing the 
mission operations cost, autonomous systems  will enable 
science objectives not possible with current spacecraft 
architectural designs. Autonomous  maneuver planning 
and implementation is a key technology for future mis- 
sions. 

This paper describes the software design and  in-flight 
implementation of the TOPEXPOSEIDON Autonomous 
Maneuver Experimentz2 (TAME) . It describes TAME’S 
architecture, its primary module (the planner), associated 
software, flight implementation strategy and the results of 
the final flight test. This experiment will provide proof-of- 
concept technology for an important area of on-board 
autonomy. 

TAME provides the algorithms necessary for autono- 
mously planning attitude maneuvers that execute an Or- 
bital Maintenance Maneuver (0”) without  violating 
constraints. An OMM is accomplished by pointing the 
spacecraft thruster in the direction of the requested veloc- 
ity increment (AV),  and thrusting until the requested AV is 
imparted. In the TOPEX case, the velocity increment is 
always imparted in the direction of the current orbital ve- 
locity vector, to correct for drag. Therefore AV direction 
is never commanded. 

The planner and its internal database resides on an exist- 
ing satellite processor, along with several auxiliary mod- 
ules. Some modules have their own databases. The data- 
bases contain certain satellite and orbit constants as  well 
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as tables of mission constraints. Upon receiving a maneu- 
ver AV and other data from ground commands, TAME 
requests tank pressures from the satellite's On-Board 
Computer (OBC). TAME uses the AV and  tank pressures 
for computing burn duration. The planner then generates 
a maneuver plan for turning from cruise attitude to burn 
attitude and back, while avoiding violations of geometric, 
power, and  thermal constraints en route. The sequence 
generator, merges the maneuver  plan  with  predefined 
OMM templates, yielding an OMM sequence that avoids 
violations of other types of constraints, such as the timing 
and order of commands. The OMM sequence, which  in- 
cludes the commands to reconfigure and to condition the 
satellite and  its components, is transmitted to the OBC for 
execution. 

This technology demonstration is providing data to per- 
form costhenefit analysis for trades between flight- and 
ground-based spacecraft mission operations. It is also 
providing approaches for new paradigms in  system archi- 
tecture, ground commanding, and test and verification that 
are necessary for designing highly autonomous event- 
driven flight systems. 

The  system  originally  planned  (described in refer- 
ences 2 and 3) would  not fit in the 1750A flight com- 
puter.  Therefore,  some  on-board  capabilities  were 
eliminated,  including spacecraft and  solar  epheme- 
rides. 

2. TOPEXA'OSEIDON MISSION 

The TOPEXPoseidon Satellite, herein referred to as 
TOPEX (Ocean Topology Experiment) was launched on 
August 10, 1992, from the Kourou Space Center in French 
Guyana. The satellite was launched into a nominal circu- 
lar orbit with an altitude of 1336 Km  and  an inclination of 
66 degrees. The TOPEX is a remote sensing mission with 
the primary science objective of providing sea surface 
altimetry from space4. The TOPEXPoseidon program is 
jointly sponsored by The National Aeronautics and Space 
Administration (NASA) and Centre National d'Etudes 
Spatiales (CNES). This joint U.S./French mission  com- 
bines each country's space ocean research missions. The 
Jet Propulsion Laboratory (JPL) manages the TOPEX 
mission for the NASA office of Space Sciences Applica- 
tion. JPL is also responsible for the day to  day operation 
of the satellite. The Toulouse Space Laboratory manages 
the Poseidon for CNES. TOPEX was slated for a prime 
mission of three years, which  was completed in September 
1995. TOPEX is currently in its forth year of an extended 
operation approved by NASA. 

The primary science objective of the TOPEX satellite is  to 
provide highly accurate measurements of the sea surface 
elevation over  all of the ocean basins. The primary sci- 
ence requirement is  to provide geocentric measurement of 
the global ocean sea level accurate to k 14  cm  with a pre- 

cision of k 2.4 cm along track. These requirements neces- 
sitated a frozen orbit that provides a fixed ground  track 
every 10 sidereal days (127 orbits)'. To maintain  the fro- 
zen orbit, the satellite occasionally performs a small 
thrusting  maneuver referred to as an Orbit Maintenance 
Maneuver (0") or a burn. 

3. TAME OBJECTIVE 

An OMM consists of three phases: a planning phase,  an 
implementation phase, and  an execution phase. In the 
planning phase, the spacecraft orbit is determined, and  the 
required velocity correction (the maneuver AV) is com- 
puted. In the implementation phase, a constraint free at- 
titude maneuver design is generated based upon propul- 
sion, power, thermal  and telecommunications inputs. The 
attitude maneuver is then converted into a sequence of 
low-level commands (an OMM sequence), which are 
loaded into a flight computer for execution. After  the 
OMM sequence is verified, a proceed command is issued 
to initiate the execution phase. Traditionally, the first two 
phases are carried out on the ground. TAME'S objective 
was to develop capabilities for carrying out the imple- 
mentation phase autonomously, in the flight computer. 

For TOPEX, the current implementation phase involves a 
labor-intensive approach that requires an iterative ex- 
change of data between the different sub-system groups 
before a solution is achieved as  shown  in Figure 1. The 
typical  maneuver design requires 3 to 4 iterations to de- 
sign a constraint free maneuver implementation design. 
This process not only requires iteration but also involves 
the interaction between several different teams of people 
who utilize separate tools to generate design inputs. This 
methodology requires substantial labor, time  and com- 
puting resources to support this design function. This 
approach may  be favored in situations where the project 
requires few maneuvers or special designs for each ma- 
neuver case. 

In a fully autonomous approach, all three phases  would  be 
carried out in flight without  any  ground intervention. Al- 
though technically feasible for most  modern satellites, this 
level of autonomy  was deemed as inappropriate for 
TAME. TOPEX flight computers, the OBC  and  the 
1750A, simply do not have sufficient unused capacity to 
support completely autonomous maneuver functions. 
Since the execution phase of an OMM has  long  been 
autonomous, it was decided that the next logical step 
would  be  to convert the implementation phase to an 
autonomous operation. With TAME, the planning  phase 
remains a ground activity. 

The objective for TAME is to replace the functions cur- 
rently performed on the ground as shown inside the 
dashed box on Figure 1. The autonomous maneuver pro- 
cess that embeds the ground functions on-board the satel- 
lite is  shown in Figure 2.  The planning phase is carried 



out on the ground by a navigation team; the resulting ma- sulting OMM sequence is downlinked to  the  ground for 
neuver AV and other data are uplinked to the spacecraft. verification and  to the OBC for execution. The execution 
The implementation phase is carried out in flight; the re- phase is carried out in flight following receipt of a com- 

mand  to proceed. 
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4. TAME ARCHITECTURE 

The TAME architecture is developed around the chal- 
lenge of implementing an autonomous maneuver strategy 
on an existing satellite with hardware and software not 
intended for such functionality. The main hardware ob- 
stacle was the lack of computing resources on the On- 
Board Computer (OBC). This problem was overcome by 
utilizing another on-board processor (1750A) utilized by 
the Global Positioning System Demonstration Receiver 
(GPSDR). Although the 1750A offered additional com- 
puting resources, a two-way communications channel did 
not exist between the two flight computers. Designing 
and  implementing a robust and stable two-way  communi- 
cations channel required the development of a completely 
new communications technique as described later in  the 
paper. 

The other key challenge was  to develop a modular  and 
reusable implementation that can easily be customized for 
other missions. Figure 3 shows TAME’S modular  archi- 
tecture. In  this architecture, the OMM sequence is  similar 
to a ground-generated OMM sequence. Thus the OBC 
utilizes existing maneuver routines to execute the se- 
quence. 

At the heart of the process is the planner. The planner 
processes OMM requests and generates the constraint free 
OMM design. Inputs to the planner are burn,  window, 
search, and  turn parameters. Maneuver AV is among the 
burn parameters. The planner utilizes a set of physical 
models that generate predicts for each of the relevant on- 
board sub-systems (Power, Thermal, Propulsion, ADCS). 
The propulsion model computes burn duration using ma- 
neuver AV from the planner and  tank pressures from  the 
OBC. Each physical model was developed using a simpli- 
fied version of the physical model  used  by the existing 
ground software. Sufficient margin  was  used  to  accom- 
modate errors introduced by the simplification. The inter- 
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face between the planner and the physical  models  has 
been standardized such that a minimal impact would  occur 
if model modifications or replacement was required for 
other mission designs. 

The planner outputs are passed to the Command Transla- 
tor  and the Sequence Generator (SEQGEN) for conver- 
sion into the mission specific command format. The out- 
put of SEQGEN is transferred to the OBC for execution. 
Other inputs and other interfaces between  modules are 
described later. 

Communication between Flight Computers 

Communication between the OBC and 1750A provided 
another challenge to the TAME design. Figure 4 graphi- 
cally shows the data transfer architecture between the 
three major interfaces; ground  and OBC, ground  and 
1750A, and 1750A and OBC. Communication is  based 
on the existing TOPEX command  and  telemetry architec- 
ture  with major modifications to the format of the  com- 
mands  and telemetry. Special attention was placed upon 
making the communications interfaces robust and inde- 
pendent from existing flight command and  telemetry inter- 
faces. Modifications to the existing command  and  te- 
lemetry predicated the need for developing or modifying 
ground software tools for interpreting the telemetry  or 
generating the commands. These support tools required 
substantial efforts and played an essential role in the suc- 
cess of TAME. 

To establish the 1750A interface with the ground, TAME 
telemetry  was embedded within the existing 1750A  te- 
lemetry. The TAME telemetry provided data regarding 
the  health of the 1750A, the execution status, command 
confirmation, and downlink of the maneuver design. A 
similar strategy was utilized for commanding where  the 
TAME commands were embedded within existing 1750A 
command channels. 
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Figure 3: TAME Modular Architecture 



The C.U. is the focal point for command  and  telemetry 
handling on TOPEX. All commands and telemetry are 
processed and routed via the C.U. Since the OBC  has 
access to the complete satellite telemetry stream via  the 
C.U., this allowed for data transfer from the 1750A to the 
OBC. For TAME, 1750A telemetry is modified by  em- 
bedding spacecraft commands, to be executed by the 
OBC, in place of normal telemetry. In this experiment, 
the OBC software modification allows the OBC to  cap- 
ture, interpret, and  verify the spacecraft commands from 
the 1750A. After extracting these spacecraft commands 
from 1750A telemetry, the OBC stores the TAME com- 
mands in the Absolute Time Command Buffer (ATCB) 
for execution at a later time. This completes the TAME 
maneuver implementation phase. TAME does not change 
the  maneuver execution phase. 

To communicate with the 1750A, the OBC utilized its 
existing capability to generate and issue satellite com- 
mands. The OBC and  ground interface utilized existing 
command  and  telemetry channels with  minor  modifica- 
tions to  the  command  and  telemetry formatting and struc- 
ture. This strategy though conceptually simple, required a 
complex communications protocol to allow for command 
and  telemetry errors, bus errors, and  timing  and  synchro- 
nization issues. 

1750A SOFTWARE ARCHITECTURE 

For each of the purposes of the experiment, the 1750A 
computer in which TAME resides acts as a co-processor 
to  the OBC. The 1750A performs all the calculations for 
planning the requested maneuver  and generates a com- 
plete sequence to implement the planned maneuver. The 
OBC receives and stores the maneuver sequence of abso- 
lute  timed commands from the 1750A. The sequence is 
then interpreted and executed. 

The software on the 1750A computer is substantially 
original. While it was developed specifically for the 
TAME experiment, the underlying software architecture 
and  command  and telemetry interfaces were inherited 
from the pre-TAME application. The software on the 
OBC, on the other hand, is substantially unchanged. A 
patch  was  made to the existing software to accommodate 
an interactive interface with the 1750A, to receive and 
process a sequence generated by the 1750A, and  to  allow 
detailed ground control over execution of the autono- 
mously generated sequence. 

The inherited architecture of the 1750A software consists 
of a main program that spawns two processes referred to 
as the high- and low-priority tusks (see Figure 6).  
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Figure 4: OBC-1750A data transfer architecture 



Interacting Modules 

Figure 5 shows the principal TAME modules  and  the  data 
that are transmitted from one module to another. Func- 
tions of the principal modules are: 

Plunner-The planner searches for a violation-free atti- 
tude path  that turns the spacecraft from its initial attitude 
to the burn attitude and, after the burn, returns the space- 
craft to the attitude it would have at that  time  had no burn 
been performed. Violations that would cause an attitude 
path  to  be rejected are pointing the spacecraft’s Z-axis too 
far from nadir, pointing one of  two trackers too close to 
the sun, overheating, and exceeding the battery’s discharge 
limit. The initial and final attitudes are on a yaw steering 
profile, which is based on the instantaneous geometry of 
the spacecraft, Earth, and Sun. As an aid  in avoiding 
violations, the attitude path includes two intermediate 
attitudes, A and B (see figure 7). Attitude A is along the 
path from the initial attitude to the burn attitude, and B is 
along the return  path following the burn. The turns  ac- 
count for turn-rate limits, settling times, and spacecraft 
dynamic behavior. The planner supplies the command 
translator and sequence generator the starting and ending 
attitude for each turn. Attitudes are supplied as quater- 
nions. Thus, for the four turns, the planner supplies five 
quaternions. The attitude during the burn is constant, so 
no additional quaternions are required to define the entire 
attitude path. 

Command translator-The command translator uses  the 
quaternions supplied by the planner to compute a se- 
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quence of bias quaternions to  be  used  by the sequence 
generator. The bias quaternions interpolate between the 
planner-supplied quaternions, thereby producing a se- 
quence of uniformly spaced intermediate attitude points 
along  any turn whose turn angle exceeds a lower limit. 
Sequence Generutor-The sequence generator merges the 
attitude path supplied by the planner and  the  command 
translator into a predefined sequence for preparing space- 
craft hardware for the turning  and  thrusting maneuvers, 
and for restoring the coasting configuration. The prede- 
fined sequence involves pre-maneuver conditioning, such 
as starting catalyst-bed heaters, opening fuel latch  valves, 
enabling propulsion module electronics, selecting thruster 
configuration, changing failure-detection limits, and oth- 
ers. 

OBC-The OBC provides real-time telemetry data from 
other satellite systems such as the propulsion tank pres- 
sures to the 1750A. It also generates a time-tagged  ma- 
neuver sequence based upon the sequence generator out- 
put  and  then executes the maneuver  command sequence. 

Physical Models-The physical models  supply several 
types of data used for defining the planned attitude path. 
Pressures in  tanks A and B, and AV (the velocity incre- 
ment  to  be imparted), are inputs to the propulsion model 
for computing burn duration. In fact, the  planner requests 
the tank pressures from the OBC, and  writes  them  in  its 
specification file; the propulsion module reads the pres- 
sures from the planner spec. 
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Figure 5: Flight Software  Modules  and Data Flow 



Command  Handler-The  command  handler receives 
commands from the ground and from the OBC, and routes 
the commands to the designated recipient. The command 
handler  transmits to the ground via the telemetry  handler 
an echo of every command received from the ground, and 
a copy of every command received from the OBC. 

Telemetry  Handler-The telemetry handler  packs  com- 
mands, status data, the maneuver sequence, and other re- 
sults in a packing buffer, and transmits the buffer to the 
ground. It also transmits commands and the maneuver 
sequence to the OBC. Telemetry data comprises every 
type: string, boolean, integer, float, vector, matrix, and 
quaternion. 

Intermodule Communication 

Objects communicate with one another by means of flags 
and modes. Each flag or mode belongs to a single object, 
but each can be read by  any object. The command  han- 
dler commonly sets flags (but not modes) belonging to 
other objects; other objects rarely if ever set flags or other 
variables that do not belong to them. 

Interacting Real-Time Processes 

TAME comprises five real-time processes, as shown  in 
Figure 6. The processes are (1) a main program, (2) a 

low-priority task, (3) a high-priority task, (4) a command 
handler, and (5) a telemetry handler. 

The main  program starts the two tasks, and  then  becomes 
inactive. The tasks cycle indefinitely, calling procedures 
in other objects but never being called. The command 
and  telemetry handlers each provide one procedure that is 
driven by an interrupt stream (CommandInterface and 
TelemetryInterface), and numerous subprograms that are 
called from subprograms in the two tasks. Procedures 
CommandInterface and TelemetryInterface are independ- 
ent of one another. The four processes that  remain active 
are described in more detail in the following sections on 
the low-  and high-priority tasks. 

Low-Priority Task- The purpose of the low-priority task, 
is to execute compute-bound modules in  the background, 
while the high-priority task services the StartInit command 
and downlink requests, which require immediate attention. 

Following initialization, the task enters an endless loop, 
polling execution flags. The value of each execution flag, 
TRUE or FALSE, determines whether the task calls or 
does not call the corresponding module, i.e., the planner, 
command translator, or sequence generator. 

Stepcompleted 

And not LoModelnit 
I f  FlagError 

NumStepsAuth = 0 

While step  not 

And step  not 

And 

And not  LoModelnit 
Pause  

If LoModelnit 
Return  Actionlnitialize 

When  step is Init or 
planner  or 

next lo-pri exec  flag 
Cmd  Translator 

Seq  Gen  to  ground 

Seq  Gen  to  OBC 

NumStepsAuth = 0 

=TRUE 

When  step is 

And 
Seq  Gen  to  ground 

Return  ActionRepeat 
NurnStepsAuth = 0 

Decrement 
NumStepsAuth 

Return  ActlonProceed 

Command  Handler  Telemetry  Handler 
FlagStartlnit = TRUE  Start Low-Priority task 
FlagStartRun = T R U E  

Downlink 6 bytes of data or f i l l  
Start High-Prlorlty task 

Start I I Start 

Mslnit 
Call 

StartTellnit 
(Notlnterrupt) 

completion 
Wait  for  telemetry init 

Call Init procedures 
of all non-interrupt. 
driven  objects 

S e t  HiModeRun 
S e t  LoModeRun 
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Each execution flag is set only by procedure StepCom- 
pleted (See Figure 6). Each is initialized in  its declaration 
to FALSE, reset to FALSE by the owning  module's  ini- 
tialization procedure, and reset to FALSE by the proce- 
dure that is called to initiate the corresponding step. 

The low-priority task's endless loop is divided into six 
steps. As the figure shows, the six steps are (1) Initializa- 
tion, (2) planner execution, (3) command translator exe- 
cution, (4) sequence generator telemetry  to ground, (5) 
sequence generator midway,  and (6) sequence generator 
telemetry to OBC. The  code permits step allocations to 
be changed easily. The term "step" always refers to a 
bounded process in the low-priority task, never  to one in 
the high-priority task. 

Steps are controlled by Multistep commands issued from 
the ground. Each of the steps ends with a call to the 
Stepcompleted procedure, as the figure shows. The 
Stepcompleted procedure, part of the STATUS object, 
receives (1) error status from each subprogram completing 
a step, (2) a further-steps-authorized number from the 
initialization process or from any Multistep command, 
and (3) any StartInit command from the ground. On  the 
basis of these data, Stepcompleted sets or omits setting 
any execution flag for the succeeding step. On the final 
step, there is no execution flag for a succeeding step. 
Nonetheless, the Stepcompleted procedure returns control 
to the caller, so that the caller can return control to  the 
low-priority task, which  then loops endlessly waiting  for a 
StartInit command. In any case, Stepcompleted returns 
an action directive to the caller. 

The action directive that Stepcompleted returns can be 
any one of three: initialize, repeat, or proceed. The ini- 
tialize directive is returned in response to a StartInit com- 
mand,  which can be issued while any step is executing or 
while the low-priority loop is idling in the StartInit proce- 
dure. The repeat directive is returned only when the first 
of the three sequence-generator steps has executed. The 
continue directive is returned whenever a step completes 
without error and further step(s) are authorized. 

The content of the action directive usually does not affect 
the response of the recipient. The low-priority task  con- 
tinues  its polling loop regardless of directive content. The 
planner  and  command translator return control to the low- 
priority task regardless of directive content. Only the se- 
quence generator responds according to directive content. 
Upon completing its first step, directive content causes the 
sequence generator to (1) repeat the step, (2) return con- 
trol to the low-priority task in response to a StartInit 
command, or (3) proceed to  its  next (second) step. Upon 
completing its second step, the sequence generator's re- 
sponses are (2) and (3) above. Upon completing its  third 
step, the sequence generator returns control to the low- 
priority task regardless of directive content, the same as 
the planner and  command translator. 

High-Priority Task-The purpose of the high-priority 
task, is  to service the StartInit command and downlink 
requests, which require immediate attention, while the 
low-priority task executes compute-bound modules in the 
background. 

Following initialization at power-up, the task cycles end- 
lessly polling for the StartInit flag and the presence of a 
queued downlink request. The StartInit flag can be  set by 
the command handler in response to a StartInit command. 
Downlink requests are placed in the queue when the data 
for downlinking becomes available. 

Planner Implementation 

As mentioned earlier, the planner supplies five quater- 
nions, shown in figure 7, defining spacecraft attitude at the 
start of the OMM sequence, at intermediate point  A, dur- 
ing the burn, at intermediate point B, and  at the finish of 
the OMM sequence. Each of  the five quaternions defines 
spacecraft attitude with respect to the Orbit Reference 
Frame (OW). The origin of the O W  is in the spacecraft, 
and the O W  rotates around the center of the Earth with 
the Z (yaw) axis always along the nadir, the X (roll) axis 
forward, the Y (pitch) axis along the negative of the or- 
bital angular momentum. The quaternions for attitudes A 
and B are identical, making spacecraft attitude at A and B 
the same with respect to the OW,  but not  the same iner- 
tially because of O W  rotation. 

The search has four dimensions. These are the epoch of 
the burn centroid and the three Euler angles that define 
intermediate attitudes A and B. Burn epoch is the time of 
the midpoint  of the burn with respect to the 6 AM epoch 
of the orbit, expressed in seconds. The 6 AM epoch is the 
time  when the center of the Sun is in the spacecraft's local 
horizontal plane, and rising due to spacecraft orbital mo- 
tion. 

The search for a violation-free path is performed by pro- 
cedure planner,  one of 19 subprograms (procedures and 
functions) in the planner module. Additional subprograms 
are nested in a few  of the 19. The search process, includ- 
ing interactions of procedure planner with  the other sub- 
programs, can be described in terms of procedure plan- 
ner's code. The planner searches for a violation-free atti- 
tude path using five nested loops, as follows: 

The two outermost loops search in the time dimension. 
The outer loop selects time windows  within  which  burn 
epochs are permissible. The next nested loop tries burn 
epochs within  the selected window. The three innermost 
loops set the Euler angles Phi, Eta, and Psi that define the 
intermediate attitudes A and B with respect to the O W  
(see figure 8). 
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All parameters used  in the search are loaded by  ground 
commands. Up  to five windows  and associated search 
parameters are permissible. Parameters include the step 
size for searching within a window, the three Euler angles, 
Burn parameters such as AV, turn parameters such as turn 
rates and settling times, and others. 

Command Translator Implementation 

As mentioned earlier, the bias quaternions computed by 
the  command translator interpolate between the planner- 
supplied quaternions, thereby producing a sequence of 
uniformly  spaced intermediate attitude points along any 
turn  whose  turn angle exceeds a lower  limit. The method 
for computing the bias quaternions is chosen to match 
peculiarities of the Topex steering algorithms. Topex yaw 
steering is distinct from roll and pitch steering. The bias 
quaternions are intended to drive roll and pitch axes but 
not the yaw axis. The algorithm interpolates poorly when 
the pitch  and roll angles are small compared to  the yaw 
angle. 

The bias quaternions are computed by interpolating only 
the roll and pitch Euler angles. The algorithm is: 

1. For the roll and pitch axes, compute an interme- 
diate Euler angle as initial + (final - initial) * i / n, where n 
is the number of steps, i is the step number in the range 
1 .. n, and "initial" and "final" refer to the initial and  final 
roll or pitch Euler angles. Thus, for each of the two axes, 
the first intermediate Euler angle is one step removed 
from the initial Euler angle, and the last intermediate 
Euler angle is identical to the final Euler angle. 

2. For the yaw axis, set the intermediate Euler angle 
to zero. 
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3. Extract the bias quaternion from the product of 
the  two direction cosine matrices that correspond to the 
pitch  and roll intermediate Euler angles. 

Sequence Generator Implementation 

As mentioned earlier, the sequence generator 
(SEQGEN) produces an OMM sequence similar to the 
sequence generated using ground-based software tools. 
The architecture of the SEQGEN is described in 

figure 9. The predefined sequence involves pre-maneuver 
conditioning, such as starting catalyst-bed heaters, open- 
ing fuel latch valves, enabling propulsion module elec- 
tronics, selecting thruster configuration, changing failure- 
detection limits, and others. 

SEQGEN has three primary software interfaces, the com- 
mand translator, the database and the telemetry formatter. 
To simplify the design, SEQGEN uses 6 hard-coded tem- 
plates, which describe the pre- and  post-maneuver  com- 
mands. These templates define the command  and the 
relative time interval to the next command, but do not 
define the absolute time. This allows TAME software to 
produce a maneuver sequence for any desired time frame. 
The remaining inputs to the sequence are retrieved from 
the common data area. These inputs are uplinked from 
the  ground or calculated by another module. SEQGEN 
must sort the inputs from the command  translator  based 
upon time, and integrate them into the predefined  se- 
quence. The integration process also involves  checking 
and reorganizing the command sequence based  upon 
spacecraft constraints. The outputs of SEQGEN consist 
of data that describe a single OBC command  and  timetag. 
These data are transferred to the telemetry Formatter for 
transmission to  the OBC and  to the ground. 



When SEQGEN is called, it is given one of  two destina- 
tions for the OMM sequence; the ground or the OBC. 
When the destination is ground, the OBC ignores the 
OMM sequence. In order to mitigate the risk of running 
the TAME experiment on an operational spacecraft, the 
calling procedure is written  to enable calling SEQGEN in 
an infinite loop, with destination ground, until a Multistep 
command is received authorizing further steps (see 
"Multistep Commands" and  "Risk Mitigation". Once 
additional steps are authorized, SEQGEN is called with 
destination OBC. 

Multistep Commands 

The  Multistep concept, generalizing the single-step con- 
cept, is to  uplink one or more commands authorizing 
TAME to take a designated number  of further steps. The 
Multistep command includes a single integer whose  value 
designates the number of steps that TAME is authorized 
to take following completion of the step underway  or  al- 
ready completed. If the value is zero, TAME idles until  it 
receives a new Multistep command or a StartInit. If a 
Multistep command is received and its value is greater 
than zero, TAME takes the number of steps designated 
and  then returns to idling. Thus the value can always  be 
chosen to authorize TAME to complete all processing. 
The default for the number  of steps authorized is chosen 
to enable TAME to  run  to completion. Its value  is  five, 
one less than the total number of steps that TAME can 
take, because it applies after the initialization step has 
been taken. The default is first set when TAME is  first 
initialized, and it is restored each time TAME is reinitial- 
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ized. Thus it is  never  necessary to uplink a Multistep 
command if  it is intended for TAME to run to completion. 

5. DESIGN, DEVELOPMENT, 
INTEGRATION & TEST 

The design and development process drove the integration 
and test of the TAME system. Therefore, before discuss- 
ing the I&T process in detail, this section discusses the 
TAME design and development process, showing  how it 
influenced the I&T process. 

At high level, TAME development, shown  in figure 10, 
consisted of the following steps: 

Design and Develop TAME Algorithms-Algorithms  for 
attitude path planning and sequence generation were 
originally developed partially in MATLAB  and partially 
in FORTRAN. FORTRAN was  used  wherever functions 
were  deemed suitable for reuse, e.g., propulsion and  ther- 
mal models. New functions were developed in 
MATLAB. 

Inherit and Rewrite 1750A Real-Time Modules-The ar- 
chitecture of the real-time processes (low-  and  high- 
priority tasks and interrupt-driven command  and  telemetry 
handlers) was substantially inherited. But all  major  mod- 
ules, including the command and  telemetry handlers, are 
completely new.  All real-time modules were developed 
on a 1750A target computer in a stand-alone testbed. 

SEOGEN 

Produce a sequential  sequence 
of OBC  time-tags  and  commands 
based upon planner & ground 
inputs  and  the  maneuver  template. 

to  time-tagged OBC 

Yaw Turn  Commands. 

w-cmds-TO- template 
mnw-cmdsl l -  template 

mnw-cmds-13- template 
w-cmds-T4- template 

0- External  to  1750A 

6  Byte  OBC 6  Byte  OBC 
Time-tags Commands 

TLM  FORMATTER 

I Telemetry  Transfer I Format  and  manage 

I to0BC I - 6-Byte  1750  TLM 

A 

figure 9: Sequence Generator  Data Flow 



Translate and Convert TAME Algorithms-TAME algo- 
rithms  were translated from their respective languages to 
Ada, producing the planner, command handler, and  se- 
quence generator. All modules were tested on a VAX 
workstation. Ada results were compared with  MATLAB 
and FORTRUN results, and the algorithms were corrected 
in  all three environments until  all test results agreed to  at 
least 13 significant places. 

Integrate and Test  1750A Flight Software-Tame  flight 
modules and real-time modules were integrated on the 
stand-alone test bed. Numerous test cases were rerun, and 
the results were compared with those from the VAX. 
Agreement  was generally to about seven significant 
places. 

Develop OBC Patch-The OBC patch algorithm was first 
developed in FORTRAN using  an existing simulation 
system for unit test. The algorithm was  then  implemented 
in  assembly language on the TOPEX system testbed. The 
patch was limited  to only one section of memory  and  tests 
showed  that  running the patch had little chance of inter- 
fering with  the  normal operation of the TOPEX space- 
craft, even if faults existed. 

Integrate and Test I750A and OBC Flight Software-All 
new flight software, 1750A and OBC, was integrated with 
existing flight software on the TOPEX system testbed. 
Tests proved that 1750A software and the OBC  patch 
communicated correctly, and  that executing the new  soft- 
ware did not interfere with  normal TOPEX operation. 

Run Topex  Autonomous Maneuver Experiments in 
Flight-The first of  two flight experiments was  performed 

TAME Algorithms TAME Algorithms 
(MATLAB and FORTRAN) (FORTRAN and MATLAB 

to Ada) 

November  17 1997, and  deemed 100% successful. The 
remaining test consisted of performing a complete OMM 
and  was performed successfully on December 1, 1998. 

At each step in the development, realistic test cases were 
used  to  verify the planner, Table 1 shows  the formal test 
cases. These test cases fall into two classes. The first 
class emulates previously conducted OMMs  by restricting 
the planner‘s degrees of freedom. The spacecraft attitude 
is required to stay nadir pointed until just before the burn, 
and the only free variable is the burn epoch. In these test 
cases, the actual spacecraft telemetry is the  “truth set” 
against which the TAME planner outputs are compared 
and evaluated. The other class of test cases are those 
which allow off-nadir pointing during the turn to burn 
attitude. These test cases take advantage of the planner’s 
capability to “walk around” a constraint. The functional- 
ity  and performance of TAME software in these cases is 
verified  by analysis. 

The final row of the table designates six project-approved 
acceptance-test cases. These cases are (1) using  OMM 7 
to verify TAME performance under  nominal conditions; 
(2) using OMM 7 to verify that the satellite can enter safe 
hold  mode  when executing a TAME-generated sequence; 
(3) using OMM 7 to verify the Multistep capability of 
preventing sending the OMM sequence to  the  OBC  until 
authorized by a ground command; (4) verifying  that  the 
OBC can detect and avoid execution of  an inaccurate or 
incomplete sequence; (5) verifying the planner’s ability to 
detect that there is no violation-free solution, and  to  wait 
for further ground commands; and (6) using  OMM  10  to 
verify TAME performance under nominal conditions. 

Maneruver  Experiments 
(Ada  and  assembly) 

figure 10: TAME Development and Test Environments 



Table 1. Formal Acceptance Test Cases 

6. Flight Experiments 

To minimize risk  to the satellite, and  to allow sufficient 
confidence to be gained before executing a thrusting  ma- 
neuver, two flight experiments were conducted. 

Experiment Number One-involved loading of the 1750A 
software and running multiple solutions. This was exe- 
cuted successfully on November 17, 1997. Two OMM 
sequences were generated and telemetered to the ground. 
Both sequences were for the same AV request, but one 
produced a TOPEX type solution, maintaining  nadir 
pointing throughout the maneuver, while the second dem- 
onstrated TAME’s capability of turning off nadir to avoid 
constraint violations. Both sequences were  tested in ad- 
vance on the TOPEX system testbed. The OMM se- 
quence was  not transmitted to the OBC. 

Experiment Number Two-exercised the complete end- 
to-end TAME process. This included generating a con- 
straint free solution, planning the attitude maneuver, and 
implementing  and executing the attitude and propulsive 
maneuvers. Further details regarding the flight experi- 
ment are provided later. 

FLIGHT EXECUTION PREPARATIONS AND RESULTS 

Extensive preparations were performed for the TAME 
flight execution. Preparations included executing a sub- 
set of the acceptance tests, performing training simula- 
tions, preparing command files, updating ground system 
databases and generating command and  telemetry  han- 
dling software tools. The TOPEX OMM execution date 
fell  such  that a propulsive maneuver was required for 

proper orbit maintenance. Hence, the TOPEX flight op- 
erations team prepared a ground based maneuver design 
in parallel with the TAME maneuver design. This parallel 
development effort allowed for another method of vali- 
dating the TAME generated solution prior to  use  in flight. 
In addition to the testing, several peer reviews  and  flight 
readiness reviews were held  to provide confidence to the 
flight team about TAME’s capabilities and risk manage- 
ment strategies. 

The current ground based maneuver design and execution 
process for TOPEX consists of a set of events occurring 
during a 3-4 week timeline. This timeline includes activi- 
ties previously described required for design iteration and 
exchange of inputs and outputs between sub-system 
teams. Although the TAME process followed the same 
timeline, different activities were conducted during this 
timeframe. The initial TAME solution was  produced in 
approximately 1 hour. One additional day was required to 
validate the solution using the TOPEX system testbed. 
The remainder of the time was spent tweaking the solution 
such  that the outputs would  be similar to the ground  gen- 
erated solution. This was necessary for the first in-flight 
execution to gain confidence in TAME and  allow for in- 
terchangeability with the ground design as a contingency. 

The following section presents some of the outputs from 
the TAME generated solution. Emphasis is given  to 
showing TAME outputs that relate to the TOPEX mission 
constraints that the TAME solution was designed to  meet. 
These variables are then compared with flight data from 
OMMlO. In cases where flight telemetry data was not 
available, a comparison is provided based upon a predic- 
tion generated by the existing ground software. 



The TAME generated roll, pitch and yaw angles are 
shown in figure 11 with the dashed lines representing 
nominal angles and the solid lines indicating attitude 
changes required or orienting the satellite prior to firing 
the thrusters. Prior to the propulsive maneuver, an atti- 
tude maneuver  must be performed to properly orient the 
thrusters along the velocity vector. This is illustrated in 
figure 11 where TAME properly oriented the satellite 
while continuing to meet nadir pointing mission require- 
ments. The majority of the rotation is performed in  yaw 
with  small biases in roll and pitch. The flight performance 
of the TAME design is illustrated in figure 12, which 
shows the flight  yaw angle based upon  telemetry during 
OMM10. 

Another  mission constraint is to  not allow the sun  to  get 
closer than 20'  Of the Star Tracker boresight.. The se- 
lected OMMlO date (12/1/98) presented a particularly 
difficult geometric problem for designing a maneuver 
solution while meeting the star tracker constraint. TAME 
quickly determined that no solution was feasible under 
these constraints. This task  would normally take a couple 
of days of evaluation. Furthermore, TAME revealed that 
a 17" constraint may be feasible. With project approval, 
this constraint was  modified  to 17' for OMMIO. The 
TAME solution (see Figure 13) shows the  sun intrusion 
with a minimum  sun angle of 17G. The flight data is 
shown for comparison in figure 14. Using the traditional 
design process took several days and  much iteration to 
reach the same conclusion. This was a particularly valu- 
able application of the TAME planner algorithm, which 
developed this solution within a span of 2-3 hours. 
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The primary thermal constraint during maneuvers relates 
to the TOPEX Microwave Radiometer (TMR). Predicting 
solar fluxes on the TMR provides the key decision com- 
ponent for meeting the thermal constraint. The TAME 
generated prediction is shown in figure 15. The flight 
data, which compare quite well, are shown  in figure 16. 

Battery State Of Charge (SOC), which provides an indi- 
cation of the available energy, is a mission critical con- 
straint. For TOPEX, the normal discharge levels during 
peak eclipse periods are approximately 12% (88% SOC). 
Hence, a mission guideline for maintaining similar charge 
levels is followed. The TAME generated solution (see 
Figure 17) predicted a SOC of 90.5% that is well  within 
the mission guideline. The actual performance from the 
flight data (see figure 18) shows SOC to be consistent 
with the predict. The TAME power model does not  ac- 
count for shading of the solar panel or albedo, which  ac- 
counts for the slight difference in discharge curves prior to 
reaching the minimum SOC. To ensure sufficient memory 
margin, TAME'S physical models  were  simplified to in- 
clude the absolute minimum required to  accomplish the 
tasks. Operationally, TOPEX limited OMM  maneuvers to 
orbits with p' between 30"  to 70". A high p' maneuver, 
such  as the OMM 10, was  never needed. With  that  in 
mind,  high p' conditions, such as shading effects, were  not 
incorporated in the TAME power module design. This is 
another testimony  to the TAME robust design that it can 
perform so well  under such diverse conditions. 
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Figure 13: TAME predicts Altimeter 
and Star-Tracker Angles for OMM10. 
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figure 14: Flight data of Star Tracker 
and  sun separation angles 
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Risk Mitigation 

For TAME to be implemented and executed on a existing 
flight program significant emphasis was placed on risk 
mitigation. Some of these provisions are optional, con- 
trolled by ground commands intended to be exercised only 
as  an additional verification for the first complete flight 
experiment. The specific steps to mitigate risks are de- 
scribed below.: 

The  Multistep system  in the 1750A enables ground 
operators to  verify TAME results step by step. 

The OMM sequence is not transmitted to the OBC  until 
it has been transmitted to the ground, it has been veri- 
fied, and a ground command  has  been received to 
authorize transmitting the sequence to the OBC. 

0 Numerous checks, such as acknowledgment and  hand- 
shaking, are made  in transmitting data from 1750A to 
OBC. 

The OBC rejects invalid or incomplete data, returns one 
of several error flags to the 1750A and the ground  and 
terminates execution of the TAME OBC code. 

Upon receipt of  an error flag from the OBC, TAME 
issues an error flag to the ground, and ceases execution 
until it receives further commands from the ground. 

0 Even when transmission of the OMM sequence has 
passed all OBC and 1750A checks, the OBC does not 
execute the sequence until authorized to do so by a 
ground command. 

Ground commands can load a  jump command  in  the 
OBC, causing the OBC to skip the burn  while executing 
the remainder of the OMM sequence. 

The OBC code modifications for TAME are limited  to 
one specific area and one processor task. Hence, an er- 
ror would impact a non-critical process and prevent the 
satellite from entering a safe-ing condition. 

Many additional GO/NOGO switches are implemented 
in OBC code. 

7. LESSONS LEARNED 

Throughout the development and implementation of 
TAME numerous valuable lessons were learned applica- 
ble to various areas not limited  to just autonomy. Some of 
the lessons are captured below: 

0 Autonomy capabilities should be considered during 
early stage of flight program development. 

It  is critical to ensure generic model design with  maxi- 
mum flexibility to alter design parameters 

For portability, all software modules should  have 
structured interfaces with generic inputs and outputs. 

0 Dedicated hardware resources for autonomy may not  be 
required if sufficient margins for computing resources 
exist. 

Maximum utilization of ground simulation and  model- 
ing should be utilized to avoid in-flight maintenance. 

Autonomy tools can be utilized for easy ground  analysis 
programs. 

8. CONCLUSIONS 

The TOPEX Autonomous Maneuver Experiment (TAME) 
has demonstrated the feasibility of using on-board algo- 
rithms for performing autonomous attitude and propulsive 
maneuvers. TAME has successfully displayed the capa- 
bilities of the maneuver planner algorithm under real mis- 
sion constraints and oversights required to ensure the 
safety  of the spacecraft. TAME has also demonstrated the 
time  and resource efficiencies that can be obtained from 
using on-board autonomy. 

The TAME algorithms could be utilized in any aspect of 
spacecraft operation that requires the planning and  im- 
plementation of constraint free turns for spacecraft or plat- 
form orientation. Using on-board orbit determination 
along  with the TAME algorithm constitute a complete 
end-to-end autonomous maneuver process. 
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